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Chapter 6
Creatine, Creatine Kinase, and Aging

Nathalie Sumien, Ritu A. Shetty, and Eric B. Gonzales

Abstract With an ever aging population, identifying interventions that can allevi-
ate age-related functional declines has become increasingly important. Dietary 
supplements have taken center stage based on various health claims and have 
become a multi-million dollar business. One such supplement is creatine, a major 
contributor to normal cellular physiology. Creatine, an energy source that can be 
endogenously synthesized or obtained through diet and supplement, is involved pri-
marily in cellular metabolism via ATP replenishment. The goal of this chapter is to 
summarize how creatine and its associated enzyme, creatine kinase, act under nor-
mal physiological conditions, and how altered levels of either may lead to detrimen-
tal functional outcomes. Furthermore, we will focus on the effect of aging on the 
creatine system and how supplementation may affect the aging process and perhaps 
reverse it.
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 Creatine

Aging is associated with declines in motor and cognitive functions. Humans have 
always been searching for a “fountain of youth”, and dietary supplements have been 
at the center of this search. One supplement that has garnered some support and is 
the focus of this chapter is creatine. Creatine, a derivative of the guanidinium cation 
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involved in a variety of cellular functions, specifically those involved in cellular 
energy, was discovered by the French organic chemist Michel Eugene Chevreul 
(Fig.  6.1) (Chevreul 1835). Chevreul found creatine as an isolate from meat and 
derived the name from kreas, the Greek word for “meat.” In 1847, German chemist 
Justus von Liebig replicated Chevreul’s work and isolated crystalline creatine (Liebig 
1847). Both scientists identified muscle as being the major reservoir for creatine.

Creatine is considered a non-essential nutrient that can be synthesized or obtained 
from a normal diet. The mammalian body produces the molecule in the liver, kid-
ney, and pancreas with the amino acids arginine, glycine, and methionine, as the 
foundation for its biosynthesis (Brosnan et al. 2011). Arginine can be classified as a 
semi-essential or essential amino acid, where the distinction is dependent on the 
developmental stage of the subject. Pre-term infants are unable to synthesize argi-
nine sufficiently due to paucity of arginine synthesis enzymes in the intestine, which 
can ultimately affect creatine concentrations. (Wu et al. 2004). Glycine is an amino 
acid that is considered essential in the human diet as the levels may vary in pre-term 
infants. This simple amino acid serves as a neurotransmitter for inhibitory chloride 
ion channels in the spinal cord (Graham et al. 1967), a co-agonist neurotransmitter 
that enhances the activity of excitatory glutamate channels in the brain (Henneberger 
et al. 2013), and as a precursor to creatine (Bloch and Schoenheimer 1941). Glycine 
is produced when serine hydroxymethyl transferase removes a methyl group from 
serine for placement on a tetrahydrofolate molecule. This reaction can occur in a 
variety of tissues and organisms as discussed in Hatefi et al. (1957). Furthermore, argi-
nine and glycine come together and through the action of L-arginine:glycine amidi-
notransferase (AGAT), guanidinoacetic acid, an immediate precursor to creatine is 
formed and transported to the liver for further enzymatic reaction. In the liver, gua-
nidinoacetic acid reacts with S-adenosylmethionine (product of methionine via a 
reaction by the methionine adenosyl transferase enzyme) to form creatine (Fig. 6.2) 
(Bera et al. 2008).

From the liver, creatine is  transported into the bloodstream and is distributed 
throughout the body. Up to 95% of creatine is stored in skeletal muscle, while the 
remaining 5% can be found in other tissues, including the brain, testes, kidneys, and 
liver (Walker 1979). Under normal conditions, creatine is synthesized constantly to 
meet the energy demands of cells, as it is rapidly used in ATP production. According 
to a study by Hoberman et al., the human body loses 2 g of creatine per day due to 
normal degradation (e.g., molecular and cellular breakdown) (Hoberman et  al. 
1948). To recover this loss each day, creatine must either be synthesized de novo or 
obtained from exogenous sources, such as diet or supplementation. Following cre-
atine intake and absorption, it enters the cells via a cell specific ‘symporter’, the 

Fig. 6.1 Creatine 
molecule. Oxygen atoms 
of the carboxylic acid 
group are red and the 
nitrogen atoms from the 
guanidine group are blue. 
Hydrogens have been 
omitted for clarity
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sodium- and chloride-dependent creatine transporter 1, a 635 amino acid protein 
encoded by the SLC6A8 gene (Nash et al. 1994). This protein is comprised of 12 
transmembrane domains, with domains 1, 3, 6, and 8 contributing to the transport 
pathway. Creatine is transported into the cell along with chloride utilizing the 
sodium gradient. The transporter is part of the neurotransmitter sodium symporter 
family, which include the ɣ-aminobutyric acid, serotonin, norepinephrine, and 
dopamine transporters (Gozzo et al. 1993). The first image of the 3-dimensional 
protein structure was determined when a bacterial homologue to these proteins was 
used to form X-ray diffracting crystals to yield a high resolution data set. The 
Aquifex aeolicus leucine transporter, or LeuTAa, provided the crystallographic data 
to show the arrangement of the transmembrane domains as well as the active trans-
port center of the protein (Yamashita et al. 2005).

Although creatine is endogenously synthesized, it can be obtained through exog-
enous means, such as a normal diet or supplementation. Beef and fish are abundant 
sources of creatine. One question that arises from the supplementation of the body’s 
own mechanism for obtaining creatine is how is exogenous creatine absorbed? 
Creatine may be absorbed within the gastrointestinal tract. While the exact 
 mechanism of creatine absorption in the gut remains unclear, positive indication of 
the creatine transporter’s presence has been observed in the intestine, suggesting 
that dietary creatine supplementation may be absorbed here (Nash et  al. 1994). 

Fig. 6.2 Diagram of creatine and creatine interaction in other biosynthetic pathways. Schematic 
used with permission from Bera et al. (2008)
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Peral et al. (2002) narrowed down the location of these transporters to the small 
intestine, where active creatine transporters were found.

Movement of creatine into cells depends significantly on the expression of the 
creatine transporter. The creatine transporter was first cloned from rabbit brain and 
shown to be expressed in all tissues but the liver and intestine (Guimbal and 
Kilimann 1993). In this first study, the highest levels of creatine transporter mRNA 
were found in the heart, muscle, and kidney. Researchers cloned the human creatine 
transporter with similar organ expression (Gonzalez and Uhl 1994; Sora et al. 1994). 
It stands to reason that, to have successful absorption of creatine, there must be 
adequate levels of creatine transporter present. However, a study by Guerrero- 
Ontiveros and Wallimann suggested that the creatine transporter expression can be 
reduced by chronic intake of creatine (Guerrero-Ontiveros and Wallimann 1998). 
The investigators in the aforementioned study, administered dietary creatine (diet 
containing 4% creatine and 50 mM creatine in the water supply) for 3–6 months to 
rats and observed a reduction in creatine transporter expression in rat quadriceps 
muscles.

As a source of energy for cellular activities, creatine plays a vital role in early 
development and good health in humans. However, there are genetic disorders that 
can disrupt creatine synthesis, absorption, and distribution in the body. These are 
termed “creatine deficiency syndromes” and individuals afflicted by  these syn-
dromes have low cellular levels of creatine. Each of the deficiencies discussed 
below have a common outcome, but vary in the path to creatine deficiency. These 
deficiencies involved enzymes that lead to the synthesis of creatine at critical reac-
tions or the protein transporting synthesized creatine into cells.

 Creatine Deficiencies

 Creatine Transporter Defect

As described above, the creatine transporter moves creatine into a cell against the 
creatine concentration gradient. This is achieved through co-transport with sodium 
and chloride ions. When working normally, the creatine transporter maintains cre-
atine levels in cells, including brain and muscle tissue. The creatine transporter 
gene, SLC6A8 gene, is located on chromosome Xq28, at the tip of the X chromo-
some (Salomons et al. 2001). To understand the role of this gene, the investigators 
studied a young boy who was experiencing diminished maturity in speech and lan-
guage abilities. Upon examination with magnetic resonance spectroscopy, it was 
determined that the levels of creatine in the child’s brain was undetectable. 
Furthermore, the patient’s creatine transporter gene had a single nucleotide substitu-
tion, a cytosine to thymine (Cecil et al. 2001). Ultimately, the expressed creatine 
transporter protein had 122 fewer amino acids than the wild type transporter that has 
625 amino acids. In an effort to slow the progression of the disease and increase the 
creatine levels in the brain, the patient was placed on an oral creatine 
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supplementation (creatine monohydrate in solution) regimen of 2.5  g creatine, 
administered three times a day. Nonetheless, the supplementation failed to increase 
the levels of creatine in brain and was therefore discontinued.

 Arginine:Glycine Amidinotransferase Defect

There are several critical enzymatic steps in the pathway to creatine synthesis. One 
of these steps in this creatine pathway is the arginine: glycine amidinotransferase 
(AGAT). The AGAT enzyme reacts with arginine and glycine to form the products 
ornithine and guanidinoacetate, the immediate precursor to creatine. Patients with a 
deficiency in the AGAT enzyme presented with significantly low concentrations of 
creatine or phosphocreatine, as seen in the brain of female siblings (Item et  al. 
2001). These patients were observed to have reduced mental capacity (mental retar-
dation) and low levels of guanidinoacetate in their urine. The AGAT enzyme in 
these patients had a single point mutation in the gene (mapped to chromosome 
15q11.2), a substitution of guanine to adenosine, which introduced a stop codon in 
place of a tryptophan codon. This mutation resulted in expression of a gene that 
encodes a truncated (shortened) and non-functioning enzyme. The AGAT deficiency 
is recessive, requiring two copies of the mutant gene to exhibit the phenotype. The 
truncated AGAT protein was incapable of catalyzing arginine and glycine substrates 
to guanidinoacetate due to the absence of the enzyme’s active-site. The younger 
brother of the aforementioned sisters had the same mutation but had normal devel-
opment by 18 months of age due to early intervention (Battini et al. 2006). In this 
case the newborn patient received creatine supplementation via two methods: the 
mother’s breast milk followed by direct supplementation. The authors point out that 
creatine supplementation of the mother’s milk was used due to a lack of toxicology 
data for direct creatine supplementation to a newborn patient. The mother’s diet was 
supplemented with creatine to achieve this goal, and this supplementation led to an 
intake range from 3 to 9  g of creatine per day. At 4  months of age, the patient 
received a direct supplementation of 100 mg/kg/day of creatine for the remainder of 
the time observed (age 18  months). During this time, plasma and urine creatine 
levels increased and remained elevated. Of note, the urine creatine levels of the 
patient were significantly higher than the normal control range (Battini et al. 2006). 
Following supplementation it was reported that, remarkably, the patient’s cognitive 
development remained normal throughout periodic observation until age 18 months.

 Guanidinoacetate Methyltransferase (GAMT) Deficiency

Guanidinoacetate methytransferase (GAMT), also known as S-adenosyl-L- 
methionine:N-guanidinoacetate methyltransferase, takes a methyl group from 
S-adenosyl-L-methionine and adds it to guanidinoacetate. From this reaction, gua-
nidinoacetate becomes the key reactant in the synthesis of creatine. Should the 
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GAMT enzyme not function properly, no creatine is synthesized and guanidinoac-
etate accumulates within the body. This enzymatic dysfunction was reported in a 
patient who had low creatine levels and an extrapyramidal movement disorder 
(Stockler et al. 1994). Despite a normal birth, the 5 year old patient could not per-
form normal basic functions like roll over, sit, and swallow. Upon study with phos-
phorous magnetic resonance spectroscopy and proton spectroscopy, the patient had 
no detectable levels of creatine or phosphocreatine. Arginine supplementation failed 
to yield improvement in function, but creatine supplementation at 400 mg/kg/d in 
the absence of arginine resulted in an improvement in the male patient’s condition. 
The patient was “more alert, followed with his eyes, grasped and moved small 
toys…and began to turn over and crawl” (Stockler et al. 1994).

GAMT enzyme malfunction has been associated with mutations within the gene. 
The gene was first cloned in 1995 (Isbrandt and von Figura 1995) and later found to 
map with human chromosome 19p 13.3 (Chae et al. 1998). The patient exhibited 
seizures, low muscle tone, and developmental delay. Similarly to the male patient 
described in the previous paragraph, the GAMT deficiency was also observed in an 
unrelated female patient exhibiting seizures, low muscle tone, and developmental 
delay (Stockler et al. 1996). Liver samples were taken from the previously described 
male and female patients with GAMT deficiency and subjected to DNA sequencing. 
The male patient’s GAMT gene DNA sequence showed mutations. There were four 
identified transcripts of the GAMT enzyme in the male patient: an insertion of 13 
nucleotides following position 309  in the GAMT gene, a guanine to adenosine 
mutation at position 327 followed by an insertion of 44 nucleotides, a transcript that 
combined these two mutations/insertions, and deletion of 146 nucleotides following 
position 181. These combinations of transcripts reflect the results of splice variants 
of the same mutant gene. The father was heterozygous with copies of the wild type 
and position 327 guanine to adenosine and 44 nucleotide insertion alleles while the 
mother was heterozygous for the wild type and the insertion of 13 nucleotides fol-
lowing position 309 alleles. The patient’s brother was heterozygous with the wild 
type and the position 309 insertion of 13 nucleotides mutant alleles. The unrelated 
female patient was homozygous with the position 327 G to A mutation with inser-
tion of 44 nucleotides in the GAMT gene along with the insertion of the 146 nucleo-
tide deletion. As compared to the unrelated male patient, the female patient was 
homozygous this mutant gene. Further analysis showed that the 327 G to A muta-
tion leads to the deletion of 146 nucleotides following position 181.

In 2014, Stockler-Ipsiroglu et al. reported on the collected data for 48 patients 
with GAMT deficiency (Stockler-Ipsiroglu et  al. 2014). Of the 48 patients, 30 
patients had increased cerebral creatine levels following creatine supplementation 
(ranging from 300–800 mg/kg). The effects of creatine supplementation appeared to 
reduce symptoms associated with epilepsy, movement disorders, and increased 
brain creatine levels. While creatine supplementation alone failed to reverse intel-
lectual disabilities, combinatorial therapy, such as including L-ornithine with cre-
atine supplementation, showed reductions of guanidinoacetate and improvements in 
one patient, in the areas of social skills and attention. Interestingly, those patients 
that had mutant GAMT gene who began treatment at prenatal, 1 week, 3 weeks, and 
9 months of age were observed to be either normal (prenatal, 1 week, and 3 week 
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old subjects) or borderline (9 month old) in measures of developmental delay and 
intellectual disability. Each of these patients were treated with creatine supplemen-
tation, a high-dose of ornithine, and a low protein diet. After months of treatment, 
three of these patients remained normal while the 9 month old was near normal. One 
could characterize these as prophylactic creatine supplementation, as the more 
severe deficits had not been observed in these patients at the time of the study. This 
may indicate that early and consistent creatine intervention is needed to avoid devel-
opmental delay. However, patients who began treatment at age 10 and 11 months 
showed mild and moderate symptoms of the deficiency. Based on the available data, 
an early intervention has potential in maintaining near normal behavior in patients 
with GAMT deficiency.

 Creatine Supplementation in Healthy Young Individuals

Dietary supplementation was projected to be a $14 billion industry in 2000 (Zeisel 
1999). Consumer surveys on dietary supplementation revealed that most individuals 
take supplements to either improve or maintain their health (Bailey et  al. 2013). 
Dietary supplements consist of vitamins, minerals, and other over the counter prod-
ucts that may not face scrutiny for efficacy and safety from the Food and Drug 
Administration. In spite of a lack of regulation, patients continue to complement 
their diets with these supplements, and they are often consumed without the guid-
ance of their primary care physician.

Creatine supplementation has shown therapeutic efficacy in cases of creatine 
deficiency, as described above in the case of patients with low to no detectable cre-
atine levels. While replacing creatine reversed some of the effects of movement 
disorders and slowed the decline in cognitive abilities, it did not affect established 
pathologies. Creatine supplementation maintained the current condition of the 
patient at the time of treatment onset and served as a prophylactic, or preventative, 
intervention before pathology began. As is the case of many prophylactic interven-
tions, the efficacy of the treatment depends on when the intervention is administered 
and how long it is maintained.

The aforementioned case studies focused on genetic deficiencies that benefit 
from creatine supplementation and may suggest to lay individuals that creatine sup-
plementation may be of benefit to them as well. The nutritional supplement industry 
touts the benefits of creatine supplementation and based on these claims, one would 
consider that supplementation of a nutrient like creatine could have added benefit in 
healthy individuals. Creatine is a popular supplement for athletes, but has also gen-
erated some interest amongst non-athletes.

Typically, the human body will produce 2  g of creatine per day, either from 
ingestion of food or synthesis in the body. This is added to the normal amount of 
creatine found in the body (approximately 120 g) (Walker 1979). Creatine supple-
mentation is common in the realm of athletics, as they use it as a source of energy 
to replenish what is lost in working muscles. In a review that focused on the use of 
creatine in sports, the authors found that there were a variety of dosing regimens for 
creatine (Butts et al. 2018). In athletes, one regimen suggested the use of loading 
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doses and maintenance doses. For example, an athlete may take 20 g per day in the 
loading phase then switch to a lower dose during the maintenance phase, in order to 
keep creatine levels elevated (Mesa et al. 2002). The length of the loading phase 
varies between studies. Creatine loading in men, 20 g per day of creatine for 6 days 
followed by 2 g per day of creatine in the maintenance phase was reported as the 
rapid way to load creatine in muscle. However, a daily dose of 3 g of creatine was 
sufficient to achieve the same elevated levels of creatine as the 20 g loading dose/2 g 
maintenance dose protocol (Hultman et al. 1996). An optimized proposed protocol 
for oral creatine supplementation suggested that the loading phase consist of 2 days, 
where 5 g of creatine is ingested four time each day (a total of 20 g creatine per day) 
and be followed by maintenance doses of 3–5 g creatine during the maintenance 
phase (Mesa et  al. 2002). Related to athletic performance, Havenetidis reviewed 
research on the use of creatine in the military (Havenetidis 2016). Within these stud-
ies, approximately 27% of supplement users consumed creatine. Surprisingly, cre-
atine failed to provide significant enhancement of performance in the majority of 
the studies investigated. However, creatine did show effectiveness as a supplement 
in anaerobic tasks, such as muscle strength and power lifting (Law et al. 2009). As 
pointed out by Havenetidis, anaerobic exercise depends on creatine phosphate 
stores in the skeletal muscle for energy, not on typical aerobic energy sources. Thus, 
a study that focuses on an aerobic-dependent energy source may not be the appro-
priate measure of efficacy of creatine. Furthermore, creatine has been used as a 
supplement for a variety of conditions, mostly based on anecdotal evidence of effi-
cacy. For some disorders, there are published research studies that suggest creatine 
is helpful in treating symptoms of the disease. Creatine has shown positive effects 
in studies of osteoarthritis (Neves et al. 2011), muscular dystrophy (Nabuurs et al. 
2013), and fibromyalgia (Leader et  al. 2009; Alves et  al. 2013). A recent report 
evaluated creatine as an anti-nociceptive compound in an animal model of thermal 
and inflammatory pain (Izurieta-Munoz et al. 2017). In this study, creatine supple-
mentation decreased nociceptive behaviors in response to inflammation and sup-
ports an anti-nociception activity with the use of creatine.

 Creatine Kinase

 History

In 1927, Eggleton and Eggleton described the existence of an extremely labile phos-
phate compound in the muscle fiber, which was later isolated and characterized as 
creatine phosphoric acid (Fiske and Subbarow 1925). In 1936, further experimenta-
tion by Karl Lohmann established that hydrolysis of creatine phosphoric acid in an 
adenylic system was reversible; this reaction, as discussed in the next section, is 
now known as ‘high energy transfer reaction’ and plays a major role in ATP produc-
tion and energy consumption both in mitochondria and cytosol (Rapoport 1978). 
During the investigation of the role of creatine kinase (CK), Banga and Askonas 
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described the role of CK in two enzyme systems; one system catalyzed the hydro-
lysis of ATP and the other transferred phosphate from creatine phosphate (Cr~P) to 
adenosine-diphosphate (ADP) (Banga et al. 1939; Askonas 1951). However, it was 
only in 1954 that Kuby and colleagues were able to isolate and partially crystalize 
the enzyme CK from rabbit muscle (Kuby et al. 1954). Over the years the use of 
serum CK, as an indicator of muscle degradation, started gaining popularity, and 
advances led to reports of the existence of different isoenzymes. It was initially sug-
gested by Dance (1962) that this enzyme exists as a dimer and that the isoenzymes 
can be separated upon electrophoresis (Dawson et al. 1965; Dawson and Fine 1967). 
As described in detail below, CK exists in three different types of isoenzymes; 
namely brain and muscle (cardiac and skeletal) which have homologous dimers and 
other tissues that have heterologous dimers consisting of both muscle and brain 
(Eppenberger 1994). In 1986, Perrymen and colleagues isolated a full length cDNA 
for human muscle (M) creatine kinase (MCK) and further, following the expansion 
of molecular genetics, significant advances were made in understanding the struc-
ture and location of specific genes for the enzyme. As a result, the location of MCK 
was narrowed down to human chromosome 19 and mapped to 19q13.2-q13.3 (Nigro 
et al. 1987; Qin et al. 1998; Perryman et al. 1986).

 Structure, Function, and Role in Biology

Evolutionarily, creatine kinase is a 40 kDa polypeptide structure, which consists of 
some highly conserved and some variable parts. The highly conserved sites of the 
framework of CK are responsible for basic functions like substrate binding while 
the variable sites are responsible for isoenzymes or species specific functions. The 
highly conserved part of this enzyme is retained across all species and all isoforms 
(Muhlebach et  al. 1994). Creatine kinase is a member of the phosphagen kinase 
family of guanidine kinases, and the primary role of these enzymes is to assist in 
ATP hydrolysis (Muhlebach et  al. 1994). It was originally considered predomi-
nantly to be a vertebrate phosphagen, but it was subsequently discovered that this 
enzyme is also present in invertebrates like sponges, mollusca, and arthropoda 
(Ellington 2000; Suzuki and Furukohri 1994). To be functionally active, CK needs 
to form dimers to create a protein structure of ~ 84 KDa units. Creatine kinase is 
typically present in tissues that demand a high level of energy like brain and muscle. 
Most vertebrate animals also have a tissue and compartment specific isoenzyme of 
CK (Schlattner et al. 2006; Schlegel et al. 1988). The type of CK found in the cyto-
sol is composed of two polypeptide subunits of 42 kDa units each. These subunits 
can either be B (brain type) or M (muscle type) and these subunits come together to 
form dimers that are present in three different isoenzymes: CK- BB (brain), CK-MM 
(skeletal muscle) and CK-MB (cardiac muscle). Another form of CK is localized in 
between the cristae and intermembrane space of mitochondria (Mt-CK). The two 
different isoenzymes of Mt-CK are ubiquitous and sarcomeric. The ubiquitous form 
is expressed in brain, smooth muscle and sperm while the sarcomeric form is 
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expressed in striated muscle found in cardiac and skeletal muscle. To form a func-
tional entity, the Mt-CK complex is expressed as an octameric structure (Schlegel 
et al. 1988; Schlattner et al. 2006; Liu et al. 2010).

To fulfill demands of cellular bioenergetics, the interplay between the cytosolic 
and mitochondrial isoenzymes of CK is essential. Cytosolic Creatine (Cr) is revers-
ibly converted to a phosphorylated form phosphocreatine (PCr) which regulates the 
concentration of ATP in the cell; both cytosolic and mitochondrial. These two iso-
enzymes are connected by a shuttle or circuit PCr/Cr (Fig. 6.3). The compartmen-
talization of these isoenzymes and shuttling of PCr into the cytosol helps 
phosphocreatine (PCr) generated in the mitochondria to be shuttled to the cyto-
plasm, and be further utilized to regenerate ATP in the cytoplasm. This regeneration 
of ATP takes place in the presence of ATPases present in the cytoplasm during 
muscle contraction or in kidneys during sodium retention. Models depicting the 
function of CK system explain that Cr/PCr act as a ‘temporal’ and ‘spatial’ energy 
buffering system. According to these models, Cr/PCr shuttle system has five main 
functions: (1) acts as a temporal energy buffer; (2) acts as a spatial energy buffer; (3) 
prevents rise in intracellular free ADP by seizing the free ADP present in the cyto-
plasm and converting it to ATP, thus regulating the net pool of adenine nucleotide in 
the cell (Iyengar et al. 1982; Iyengar 1984); (4) acts as a proton buffering system by 
preventing acidification of the tissues both at cellular or global levels during ATP 
hydrolysis, and; (5) maintains a low ATP/ADP ratio in the mitochondria while 
maintaining a high ATP/ADP ratio in the cytosol, which is important to stimulate 
oxidative phosphorylation in the mitochondria and ATP consumption in the cytosol 
(Wallimann et al. 1989; Eppenberger 1994).

Fig. 6.3 Creatine/Phosphocreatine shuttle system to maintain cellular energy homeostasis; based 
on (Schlattner et  al. 2006). The schematic depicts compartment specific CK (mitochondrial 
CK-mtCK and cytosol CK-cyCK). (1)-Decrease ATP/ADP in the mitochondria (2)-Increase ATP/
ADP ratio in the cytosol (3)-Increase in ATPases activity to consume ATP in the cytosol (4)-Cr/PCr 
shuttle system to maintain ATP/ADP ratios globally both in mitochondria and cytosol
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 Distribution in Tissues

The ratio of the subunits of CK found in the cytosol varies according to the tissue. 
Skeletal muscle typically contains 98% MM and 2% MB and cardiac muscle con-
tains 70–80% MM and 20–30% MB, while the brain predominantly has only the 
BB type of the isoenzyme (Schlattner et al. 2006; Wallimann and Hemmer 1994). 
High amounts of energy is utilized in the brain and with only small amount of 
energy stores like glucose, glycogen from aerobic respiration, the organ has to rely 
on the Cr/PCr shuttle system for its energy source (Norwood et al. 1983). CK from 
brain mitochondria is very specific and different from the isoenzyme found in the 
heart mitochondria (Schlegel et al. 1988; Wyss et al. 2000). Adult human brain also 
contains MM-CK and is restricted to specific regions of the brain (Hamburg et al. 
1990). There are huge regional differences in the activity of CK within the different 
brain regions. In the cerebellar cortex, higher levels of CK and PCr were measured 
in the molecular layer than in the white matter (Maker et  al. 1973). Further, the 
activity of CK was higher in the cerebellum, striatum and pyramidal cells when 
compared to whole brain (Manos et al. 1991). Creatine kinase is not limited to neu-
ronal cells but is also present in glial cells, astrocytes and oligodendrocytes (Manos 
et  al. 1991; Yoshimine et  al. 1983). In these cells, CK function is coupled with 
myelin synthesis, transport and assembly and therefore is postulated to play a sig-
nificant role in certain neurodegenerative diseases (David et al. 1998).

The MM-CK muscle specific CK is able to interact with M-band (myomesin) of 
sarcomere and functionally is coupled with a variety of ATPase pumps present at the 
sarcoplasmic reticulum and regulates various ATP dependent functions (Saks et al. 
1978). The myofibrils in the heart also contain specific MM-CK and Mt-CK isoen-
zymes which are localized in the sarcoplasmic reticulum, plasma membrane, myo-
filaments, mitochondria and glycolytic complexes of cardiac muscles 
(Ventura-Clapier et al. 1987). In smooth muscles all types of CK isoenzymes were 
detected (BB, MB and MM), however, BB-CK and Mt-CK are the main isoforms 
that were identified in smooth muscle fibers and may perform specific functions 
associated with that cell (Clark 1994). CK is also present in cells like spermatozoa, 
retinal cells, pancreas, placenta, thyroid, thymus, brush-border of the intestine, car-
tilage and bone cells (Wallimann and Hemmer 1994). The tissue specific distribu-
tion of the CK enzyme in different cellular organelles further suggest that the 
presence of Cr/PCr shuttle system is able to fulfill the intermittent and/or high 
energy demands of a cell.

 Factors Affecting Level of Creatine Kinase

According to the standard established by the International Federation of Clinical 
Chemistry (IFCC) the upper reference level for CK for males is 171 U/I and for 
females is 145 U/I (Schumann and Klauke 2003). The sex difference in CK levels 
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could be attributed to higher proportion of muscle mass in males (Neal et al. 2009). 
Similarly, creatine kinase levels in the plasma can be altered by a myriad of factors 
that include race, age, physical activity, medications, minor injuries and diseased 
states. Medications like statins are known to cause muscle damage, and therefore as 
an indicator of muscle damage, it is common practice by physicians to monitor CK 
levels in patients on statins. Recent reports from large number of clinical studies 
conducted to study the effects of statins on different age groups and ethnicity has led 
to a better understanding of differences in creatine kinase levels (Neal et al. 2009). 
Creatine kinase levels in African Americans in both sexes were significantly higher 
in comparison to other races such as Caucasians, Hispanics and South Asians (Neal 
et  al. 2009). However, CK levels among non-African Americans were similar. A 
post-mortem study in black and white males, comparing CK levels in tissues from 
different organs such as cerebrum, cerebellum, heart, renal artery and skeletal mus-
cle reported a 70% increase in CK in African American males (Brewster et al. 2012). 
The results from recent studies highlighting the racial differences in CK levels are in 
concurrence with the some studies conducted 3–4 decades ago (Meltzer and Holy 
1974; Wong et al. 1983; Black et al. 1986). Therefore, the National Muscle Expert 
Association has recommended ‘race-ethnicity-and-sex’- specific values for upper 
limits of normal (ULN) for diagnoses of abnormal CK levels (Thompson et al. 2006).

Age is another factor that has an impact on CK levels. In newborns, levels of CK 
are reported to be 10 times higher than in adults (Gilboa and Swanson 1976). Gilboa 
and Swanson reported a high increase in CK activity in the first 4 days following 
delivery and pointed that the increase in activity could be explained by increased 
physical stress endured by the fetus during birth. Further, these levels returned to 
normal levels by 6–10 weeks post birth (Gilboa and Swanson 1976; Zellweger and 
Antonik 1975; Rudolph and Gross 1966). A study in females revealed changes in CK 
levels throughout their life; the CK levels increased dramatically during pre- puberty, 
pregnancy, and postmenopause (Bundey et al. 1979; Fukutake and Hattori 2001).

Exercise is also a major factor affecting CK levels. In males who trained for dis-
tance running, CK levels were elevated to 168 ± 15 U/L during training and these 
levels were significantly lower when the training was reduced (Houmard et  al. 
1990). Therefore, it can be concluded that low to moderate exercise causes an 
increase in level of serum CK; however, these levels are back to baseline levels 
within 7–9 days once training is discontinued. During mild to moderate exercise the 
body is able to facilitate the repair of the damaged muscle tissue, to regulate the 
metabolic disruption of cellular components in muscle and ultimately restore nor-
mal serum CK levels (Totsuka et al. 2002). However, excessive physical exertion 
like running marathons, can cause skeletal muscle damage and in some extreme 
cases, in untrained individuals could lead to a condition called as rhabdomyolysis 
(Morandi et al. 2006). This disease is characterized by symptoms such as muscle 
pain, soreness, increased weakness, and darkened urine. During this state, lysis of 
skeletal muscle cells releases intracellular toxins into the systemic circulation and if 
left untreated can result in kidney damage (Morandi et al. 2006). Creatine kinase 
levels are highly sensitive to muscle injury and can therefore be used as a tool to 
diagnose muscle damage. Serum CK levels during rhadomyolysis can raise up to 
300 × 106 U/L (Efstratiadis et al. 2007). However, the exact mechanism resulting in 
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such an increase in CK levels is poorly understood. Direct muscle injuries include 
injuries occurring from natural disasters like, earthquakes or car and industrial acci-
dents. Such individuals undergo severe pathophysiological changes due to extreme 
trauma and require dialysis to prevent rhabdomyolysis-induced renal failure (Criddle 
2003; Vanholder et al. 2000). In patients with metabolic-endocrine disorders like 
hypokalemia, hyponatremia, hypophosphatemia, and hypothyroidism, the permea-
bility of the sarcolemma can be altered distorting the function of sarcomere result-
ing in rhabdomyolysis (Vanholder et al. 2000; Shiber and Mattu 2002). Similarly, 
drugs like statins, fenofibrates, antiretrovirals, angiotensin-II receptor antagonist, 
immunosuppressants, and hydroxychloroquine result in significant muscle damage 
and may also contribute to rhabdomyolysis (Jamal et al. 2004; Warren et al. 2002). 
Patients who suffer from genetic disorder like Duchenne and Becker muscular dys-
trophies suffer from rapid progressive degeneration of the muscle fibers beginning 
at 3–5 years of age due to faulty dystrophin gene. These individuals are susceptible 
to complications like malignant hyperthermia as a result of anesthesia used during 
surgery. Acute rhabdomyolysis is one of the key contributing factors for malignant 
hyperthermia and eventual death of these patients (Morris 1997; Hayes et al. 2008). 
Creatine kinase is also increased in patients suffering from certain autoimmune dis-
ease like polymyositis and dermatomyositis (Thakur et al. 1996; Galarraga et al. 
2003). Therefore, it can be concluded that early and continuous monitoring of serum 
CK can be used as a clinical tool to detect onset and severity of muscle disorders.

 Aging and Creatine

 Oxidative Capacity and Aging: Levels of Creatine

In a normal 70 kg human, the total creatine reserve is 120 g, with 2 g/day being 
produced from endogenous sources (Walker 1979). The levels of creatine and the 
activity of creatine kinase seem to decrease as a function of age in both animals and 
humans.

Skeletal muscle changes with age are associated with diminished capacity to 
accomplish daily tasks. Reports are inconsistent regarding whether these functional 
changes are also associated with decreases in oxidative capacity of the muscles. 
Mitochondrial enzymes and respiratory rates of muscles seem to be decreased with 
age in humans (Short et al. 2005), and oxidative capacity, measured by in vivo phos-
phorus magnetic resonance spectroscopy (MRS), has been shown to be lower in 
gastronecmius (McCully et  al. 1993) and vastus lateralis (Conley et  al. 2000) in 
older individuals than in young ones. However, other laboratories reported con-
served levels of oxidative metabolism with age in humans when matching for physi-
cal activity (Rasmussen et  al. 2003). This was supported by studies using 
phosphocreatine (PCr) rate of recovery post-contraction as a MRS measure of oxi-
dative capacity showing no differences between young and old subjects (Lanza 
et  al. 2005). The inconsistency of outcomes may be due to a variety of factors, 
including the level of activity of an individual, and muscle differences. A study by 
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Larsen et al. tackled this potential issue and determined that the differences in oxi-
dative capacity, measured by PCr recovery from contraction using magnetic reso-
nance spectroscopy, were sex- and muscle- dependent and that physical activity 
influenced the outcome (Larsen et al. 2012).

Using volumetric proton magnetic resonance spectroscopic imaging to map 
brain metabolites, it was determined that creatine was higher in gray matter than in 
white matter, and that its levels were higher in old individuals than in young ones 
(Pfefferbaum et  al. 1999). Increased levels of creatine signify a decrease in PCr 
levels, and thereby a decrease in overall oxidative metabolism. Furthermore, in 
post-mortem samples of the frontal and occipital regions, creatine kinase activity 
was decreased in old controls vs. young controls (Smith et al. 1991). Interestingly, 
in neuronal cultures from hippocampus, Aksenova et al. reported a gradual increase 
with “age” in creatine kinase levels associated with a decreased enzymatic activity, 
thereby suggesting an accumulation of inactive creatine kinase molecules (Aksenova 
et al. 1999). In gerbils, the activity of CK was found to be decreased with aging in 
the brain, along with other markers of oxidative stress (Carney et al. 1994).

The creatine/phosphocreatine (Cr/PCr) system is important for metabolism and 
therefore plays a vital role in the normal cellular function, in particular high energy 
demand cells such as muscle and brain cells. Depletion of creatine has been associ-
ated with brain disorders including cognitive and motor impairments, and language/
speech issues (van de Kamp et al. 2014; Joncquel-Chevalier Curt et al. 2015). A 
study of the cerebral creatine deficiency syndrome-2 mice, which have a mutation 
in the creatine transporter, reported impairments of short- and long-term memory 
along with other markers of brain dysfunction (Baroncelli et  al. 2016). Another 
model of creatine deficiency, creatine transporter knockout mice, have shown severe 
deficits in cognitive function in males (Skelton et al. 2011), and relatively mild defi-
cits in the females (Hautman et al. 2014).

Overall, cell, rodent and human studies indicated a derangement of the creatine, 
phosphocreatine and creatine kinase system at least in muscle and brain  tissues 
associated with aging. Furthermore, creatine depletion has been shown to lead to 
phenotypes of motor and cognitive impairments, and motor and cognitive dysfunc-
tions are hallmarks of the aging process. Overall, these studies suggest that supple-
mentation with creatine has the potential to reverse functional declines associated 
with aging (and to some extent age-associated diseases).

 Creatine Supplementation, Diseases and Aging

 Creatine and Diseases

Creatine is an ergogenic compound that is attractive to athletes due to its propensity 
to increase ATP formation (Hall and Trojian 2013) and the very few unwanted side 
effects associated with its intake (Juhn and Tarnopolsky 1998). Its supplementation 
leads to increase PCr which is a critical form of energy storage needed for high 
intensity exercise. Creatine supplementation has been extensively studied in young 
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individuals and in association with exercise (Bemben and Lamont 2005). With the 
emphasis on the effect of creatine on metabolism and its other properties, the focus 
of creatine supplementation shifted from athletes to a plethora of diseases; diseases 
involving neuromuscular disorders and/or mitochondrial dysfunction such as 
Parkinson’s and Huntington’s diseases and others (Smith et al. 2014). Furthermore, 
creatine is found to be relatively safe, can penetrate the blood-brain barrier, and has 
shown some efficacy in animal models, thus making it a good candidate as a neuro-
protective agent. A randomized double-blind study determined that creatine could 
not be rejected as futile for therapy of Parkinsonism, and could be considered for 
Phase III trials for Parkinson’s Disease (Investigators 2006). A thorough review by 
Persky and Brazeau provided mechanisms of actions and a summary of the effects 
of creatine supplementation in animal and human studies for pathological condi-
tions such as heart disease, musculoskeletal disorders, depression associated with 
stroke, gyrate atrophy, and nephrotoxicity (Persky and Brazeau 2001). Other studies 
have proposed that creatine could benefit patients with fibromyalgia (Leader et al. 
2009), and could reduce morbidity and mortality associated with high-risk pregnan-
cies (Dickinson et al. 2014). Another nice review by Klopstock et al. reported the 
outcomes of creatine supplementation in rodent and human studies of neurodegen-
erative diseases such as Parkinson’s disease, Huntington’s disease, and amyotrophic 
lateral sclerosis, and reflected that while creatine seemed promising in mice studies, 
it did not translate well in human clinical trials. However, it is noteworthy that there 
has not been many published reports of creatine supplementation in humans, and 
that perhaps the mice models used are to be questioned as to how well they reflect 
human conditions (Klopstock et al. 2011).

 Creatine Supplementation and Aging

Aging studies of creatine supplementation are sparse; however some parallel to suc-
cessful intervention such as caloric restriction can be drawn making it a worthy 
compound to alleviate the negative effects of aging. It has been shown to have anti- 
apoptotic (O’Gorman et al. 1997) and antioxidative properties (Lawler et al. 2002), 
two capacities that should help reverse the effects of age.

Sarcopenia, an age-related loss of muscle mass and function, and its associated 
bone loss results in frailty and increased risk of fall, leading to decreased indepen-
dence, increased social isolation and depression, and possibly death. Finding ways 
to reduce or reverse age-related declines in function are of the utmost importance to 
improve survival and quality of life as we age. Creatine is a particularly attractive 
supplement especially in the elderly due to its safety potential with few unwanted 
side effects. However, caution must be advised, as long-term studies of creatine 
supplementation are lacking, and there is a potential risk of side effects  that is 
increased especially in individuals with kidney diseases/issues (which is a likely 
scenario in older individuals). After only 5  days of creatine intake, middle-aged 
individuals had a higher PCr availability and PCr resynthesis than younger subjects, 
and increased time to exhaustion to the same degree in both age groups (Smith et al. 
1998). A meta-analysis revealed that creatine supplementation associated with 
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resistance training increased muscle mass, and improved upper body strength to a 
further extent that training alone (Candow et al. 2014). Several studies have deter-
mined that intake of creatine have anabolic (muscle mass, strength, volume train-
ing) and anti-catabolic (protein catabolism, oxidation) effects (Dalbo et al. 2009). 
On the other hand, other studies have reported a lack of effect on sarcopenia, in this 
case in a mouse model of accelerated aging (Derave et al. 2005). Older, healthy and 
normally active men and women responded positively to creatine intake for 7 days 
and exhibited improvements in muscle strength and performance on physical tasks 
(Gotshalk et al. 2002, 2008). In 70 year old males, creatine supplementation along 
with strength training improved leg strength, endurance and power as well as lean 
tissue mass (Chrusch et al. 2001). In a group of 75 ± 6 year old men and women, 
creatine supplementation for 14 days resulted in increased upper body strength and 
increased fatigue threshold (Stout et al. 2007). More recently, a review and meta- 
analysis by Chilibeck et al. revealed that creatine supplementation had beneficial 
effect in old participants during resistance training, with increased lean tissue 
mass and, muscular strength (Chilibeck et al. 2017). Creatine may also have benefi-
cial effect on bone health via direct or indirect (byproduct of improved muscle 
health) actions, associated with improved bone health in older males (Chilibeck 
et al. 2005). In in-vivo work on osteoblast-like cells, creatine’s presence increased 
mineralization and metabolic activity supporting potential beneficial effect of cre-
atine on bone repair (Gerber et al. 2005).

Studies of creatine supplementation have been well documented in neuromuscu-
lar and neurodegenerative diseases (Wallimann et  al. 2011), however studies in 
healthy individuals are less common. The neuroprotective effects of creatine have 
been hypothesized to be due to its antioxidative, antiapopototic and bioenergetics 
properties (Wallimann et al. 2011). Aging is associated with redox and bienergetic 
dysregulation, therefore creatine could be a useful supplement to reverse effects of 
aging on overall health and more specifically brain health. In healthy mice, creatine 
supplementation increased their median life span, and improved healthspan, along 
with measures of oxidative stress and neuroprotection (Bender et  al. 2008). In a 
human study, creatine intake for 2 weeks was reported to improve memory on most 
tasks, however the study had low power (McMorris et al. 2007). In the aging rodent 
a study of creatine supplementation by Bender et al. (2008) found that some bio-
markers such as DNA oxidation, age pigment lipofuscin, and BDNF (Brain-derived 
neurotrophic factor) followed the same trends as observed with caloric restriction 
(Sohal and Weindruch 1996; Duan et al. 2001). While these effects were relatively 
small, they amounted to an overall antiaging effect of creatine which warrants more 
studies. However, it is noteworthy that clinical trials of antiaging interventions are 
seldomly done and funding is extremely difficult to gain.

 Is Creatine a Viable Option to Alleviate Age–Related Dysfunction?

Creatine is a safe and inexpensive supplement that has shown to have numerous 
benefits in the athletic population. However, studies of the effects of creatine in the 
elderly population remain sparse, and the outcomes of these studies are equivocal 
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and are relatively small (see review from Dalbo et al. for details of studies). As for 
any antiaging interventions, there are many factors to consider including early vs. 
late life implementation, the duration and the age and sex of the subjects, all of 
which may influence the outcome. Prolonged exposure to high creatine concentra-
tion may also lead to down-regulation of the creatine transporter, but would need to 
be studied to determine whether on/off supplementation can lead to further benefits 
compared to continuous supplementation. While some age-related adaptations may 
decrease the response of older individuals to creatine supplementation, there 
remains strong support for creatine enhancing muscular performance in short inter-
vention times (5–7 days). The US Society for Sarcopenia, Cachexia and Wasting 
Disease has reviewed the literature and made recommendations on supplements 
(Morley 2015). They suggest that short-term creatine may be of benefit along with 
exercise for sarcopenia, however long-term studies for this and other conditions are 
needed. Effects on neurodegenerative diseases remain to be seen in clinical trials, 
and consistent effects on age-associated declines need to be further studied.
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